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Abstract

Minimal stencil width discretizations of combined mixed and non-mixed second-order derivatives are analyzed with
respect to accuracy and stability. We show that these discretizations lead to stability for Cauchy problems. With a careful
boundary treatment, we also show that the stability holds for initial-boundary value problems. The analysis is verified by
numerical simulations of Burgers’ and Navier–Stokes equations in two and three space dimensions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Minimal stencil width approximations of non-mixed second-derivatives have long been known to have
good accuracy properties. However, stability cannot easily be proven for problems with a combination of
mixed (o2/oxoy) and non-mixed (o2/ox2, o2/oy2) second-derivatives, such as the compressible Navier–Stokes
equations and the elastic wave equation [7]. In this paper, we introduce the term narrow, to define explicit finite
difference schemes with a minimal stencil width.

For the continuous problem one can derive an energy estimate for the linearized and symmetrized
Navier–Stokes equations, proving boundedness of the initial-boundary value problem [18,16,4]. (Although
the analysis in this paper is done for a 2-D problem, the extension to a 3-D problem is straightforward.)
If first-derivative difference operators that satisfy a summation-by-parts (SBP) formula are employed twice
for all second-derivatives (non-mixed and mixed, yielding a wide stencil approximation), and if the simul-
taneous approximation term (SAT) method [3] is used to implement the boundary conditions, one can
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exactly mimic the continuous energy estimate (proving stability, see [4]). However, the wide-stencil approx-
imation does not damp spurious oscillations (the highest frequency that can exist on the grid) without
addition of artificial dissipation.

Stability is not so easily shown for a narrow-stencil approximation of the Navier–Stokes equations. How-
ever, if stability can be shown, the advantage of using a narrow-stencil approximation compared to the cor-
responding wide-stencil approximation is twofold: (i) The narrow-stencil approximation have a smaller error
coefficient and (ii) it damps the highest frequency mode (spurious oscillations), without the addition of arti-
ficial dissipation. Hence, the narrow-stencil approximation is potentially more accurate than a wide-stencil
approximation, in particular when viscous effects are important.

The main focus in this paper is to prove stability for narrow-stencil approximations of the compressible
Navier–Stokes equations. A detailed discussion on efficiency (see [10,14] for a more precise definition of effi-
ciency) in terms of runtime for a given error tolerance is avoided here, since is it relies to much on the actual
problem and code implementation. The results for the 2-D Burgers’ equation (that is also analyzed and sim-
ulated in this paper) show that the narrow-stencil approximations are much more accurate than the wide-sten-
cil approximations on a given grid. The fact that the stencil width is naturally smaller, means that less
arithmetic operations are needed on a given grid using a narrow-stencil. The time-step restrictions using an
explicit Runge–Kutta method are almost identical for both formulations. Hence, the narrow-stencil approx-
imations of the 2-D Burgers’ equation are more efficient than the wide-stencil approximations. The second-
order accurate simulations of the compressible Navier–Stokes equations also indicate that the narrow-stencil
approximation is more efficient than the wide-stencil approximation. A more extensive analysis is required
before any decisive conclusions can be made for the high-order accurate narrow-stencil approximations of
the compressible Navier–Stokes equations. (Such a code has not yet been implemented.)

Stable and high-order accurate narrow SBP approximations for 1-D problems were analyzed in [13].
However, stability for 2-D and 3-D problems with mixed second-derivative terms were never addressed
in [13].

In Section 2, we discuss the SBP property for the first- and second-derivative difference operators. In Sec-
tion 3 we show an important relationship between the first- and second-derivative SBP operators, referred to
as compatibility. The first main result in this paper is to prove that a certain group of the SBP operators pre-
sented in [13] can become compatible. The second main result is to prove that compatibility is a necessary con-
dition obtaining an energy estimate (i.e., proving stability) for the narrow-stencil approximation of the
Navier–Stokes equations. A 2-D model of the Navier–Stokes equations is introduced where we show how
to combine the SAT method and the SBP operators to obtain stable narrow-stencil approximations using
the energy method [5]. In Section 4, the accuracy of the narrow- and wide-stencil approximations are com-
pared by performing numerical simulations of Burgers’ and the compressible Navier–Stokes equations in 2-
D and 3-D. Conclusions are drawn in Section 5.

2. Definitions

The 2-D and 3-D schemes are constructed using 1-D SBP finite difference operators. We begin with a short
description and some definitions (for more details, see [8,19,13]).

Let the inner product for real-valued functions u,v 2 L2[0,1] be defined by ðu; vÞ ¼
R 1

0
uvwdx, w(x) > 0, and

let the corresponding norm be kuk2
w ¼ ðu; uÞ. The domain (0 6 x 6 1) is discretized using N + 1 equidistant

grid points,
xi ¼ ih; i ¼ 0; 1 . . . ;N ; h ¼ 1

N
:

The approximative solution at grid point xi is denoted vi, and the discrete solution vector is
vT = [v0,v1, . . . ,vN]. Similarly, we define an inner product for discrete real-valued vector functions u,
v 2 RN+1 by (u,v)H = uTH v, where H = HT > 0, with the corresponding norm kvk2

H ¼ vTHv. The following
vectors will be frequently used:
e0 ¼ ½1; 0; . . . ; 0�T; eN ¼ ½0; . . . ; 0; 1�T: ð1Þ
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2.1. Narrow-diagonal SBP operators

To define narrow-diagonal SBP operators, we make use of the following definition:

Definition 2.1. An explicit pth-order accurate finite difference scheme with minimal stencil width of a Cauchy
problem, is called a pth-order accurate narrow stencil.

Remark. We say that a scheme is explicit if no linear system of equations need to be solved to compute the
difference approximation. Spatial Padé discretizations [11] are often referred to as ‘‘compact schemes’’. The
approximation of the derivative is obtained by solving a tri- or penta-diagonal system of linear equations
at every time-step. Hence, if written on explicit form, Padé discretizations lead to full difference stencils, sim-
ilar to spectral discretizations.

Consider the hyperbolic scalar equation ut + ux = 0 (excluding the boundary condition). Multiplying by u
and integrating by parts (referred to as the energy method) lead to
d

dt
kuk2 ¼ �ðu; uxÞ � ðux; uÞ ¼ �u2j10; ð2Þ
where u2j10 � u2ðx ¼ 1Þ � u2ðx ¼ 0Þ.

Definition 2.2. A difference operator D1 = H�1Q approximating o/ox, using a pth-order accurate narrow-
stencil, is said to be a pth-order accurate narrow-diagonal first-derivative SBP operator, if H is diagonal and
positive definite, and Q + QT = B = diag(�1,0, . . . , 0,1).

As an example of its use, consider the semi-discretization of ut + ux = 0, which is vt + D1v = 0. Multiplying
by vTH from the left and adding the transpose lead to
d

dt
kvk2

H ¼ �ðv;H�1QvÞH � ðH�1Qv; vÞH ¼ �vTðQþ QTÞv ¼ v2
0 � v2

N : ð3Þ
Estimate (3) is the discrete analog of (2).
For parabolic problems, we need an SBP operator for the second derivative. Consider the heat

equation
ut ¼ ðbuxÞx; ð4Þ

where b(x) > 0 is a smooth function. Multiplying (4) by u and integrating by parts lead to
d

dt
kuk2 ¼ ðu; ðbuxÞxÞ þ ððbuxÞx; uÞ ¼ 2buuxj10 � 2kuxk2

b: ð5Þ
Definition 2.3. Let DðbÞ2 ¼ H�1ð�M þ BSÞ approximate o/ox(bo/ox), where b(x) > 0 is a smooth function,

using a pth-order accurate narrow-stencil. DðbÞ2 is said to be a pth-order accurate narrow-diagonal second-
derivative SBP operator, if H is diagonal and positive definite, M is symmetric and positive semi-definite, S

approximates the first-derivative operator at the boundaries and B = diag(�b0,0, . . . , 0,bN).

(High-order accurate narrow-diagonal second-derivative SBP operators for constant coefficients b(x) = 1,

denoted D2, were constructed in [13].) An example of its use is the semi-discretization vt ¼ DðbÞ2 v of (4). Mul-
tiplying by vTH and adding the transpose lead to
d

dt
kvk2

H ¼ 2vNðBSvÞN þ 2v0ðBSvÞ0 � 2vTMv: ð6Þ
Estimate (6) is a discrete analog of (5).

Remark. To obtain energy estimates for schemes utilizing both D1 and DðbÞ2 requires that both are based on the
same norm H.
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There are two options in obtaining a narrow-stencil approximation of (4). The first option (as shown above)
is to approximate (b ux)x using a narrow-diagonal second-derivative SBP operator DðbÞ2 , to exactly mimic the
continuous estimate (5). This yields a strictly stable approximation (see [5] for the exact definition of strict sta-
bility), meaning that the continuous and discrete energy-growth (or decay) are consistent. (A second-order
accurate narrow-diagonal second-derivative SBP operator DðbÞ2 is presented in Appendix C). The second
approach is to discretize the expanded form buxx + bxux (using the constant coefficient SBP operators in
[13]), given by vt ¼ BD2vþ BxD1v. The matrices B, Bx have the values of b, bx injected on the diagonal. Mul-
tiplying vt ¼ BD2vþ BxD1v by vTH and adding the transpose lead to
d

dt
kvk2

H ¼ 2vN ðBSvÞN þ 2v0ðBSvÞ0 þ vTðQTBx þ BxQ� BM �MTBÞv: ð7Þ
Estimate (11) mimics the continuous estimate (5), if ðQTBx þ BxQ� BM �MTBÞ is negative semi-definite. An
eigenvalue analysis (not shown here) for various test-functions b(x) > 0 (and number of unknowns) indicate
that ðQTBx þ BxQ� BM �MTBÞ is negative semi-definite for the higher order approximations (but for the
eighth-order accurate scheme we found cases with a small positive eigenvalue approaching zero when grid-
refining).

However, a strictly stable approximation of the 1-D problem (4) does not automatically lead to a strictly
stable approximation of
ut ¼ ðc11ux þ c12uyÞx þ ðc21ux þ c22uyÞy ;
modeling the viscous Navier–Stokes terms in 2-D. We will return to the stability issues for narrow-stencil
approximations of 2-D and 3-D problems in Section 3.

Remark. The boundary closure for a pth-order accurate narrow-diagonal SBP operator is of order p/2 (see
[13]). This means that the boundary closure for (D1)2 is of order p/2 � 1. Hence, for fully parabolic problems
the global order of accuracy (for the wide-stencil approximation) drops to (p/2 + 1)th-order. The convergence
rate for narrow-stencil approximations of incompletely parabolic problems like the Navier–Stokes equations
(see [22] for more information on the accuracy of finite difference approximations) drops to (p/2)th-order. This
means that narrow-stencil approximations of fully and incompletely parabolic problems have a global order of
accuracy one order higher than corresponding wide-stencil approximations, except for the second-order
accurate case where both formulations lead to second-order convergence.
2.2. 2-D domains

Next, we turn to 2-D schemes where the Kronecker product is needed
C � D ¼

c0;0D � � � c0;q�1D

..

. ..
.

cp�1;0D � � � cp�1;q�1D

2664
3775;
where C is a p · q matrix and D is an m · n matrix. Two rules for the Kronecker product are used, (A � B)
(C � D) = (AC) � (BD) and (A � B)T = AT � BT.

Next, consider the domain X defined as 0 6 x 6 1, 0 6 y 6 1 with an (N + 1) · (M + 1)-point equidistant
grid as
xi ¼ ihx; i ¼ 0; 1 . . . ;N ; hx ¼
1

N
;

yj ¼ jhy ; j ¼ 0; 1 . . . ;M ; hy ¼
1

M
:

The numerical approximation at grid point (xi,yj) is denoted vi,j. We define a discrete solution vector
vT = [v0,v1, . . . ,vN], where vk = [vk,0,vk,1, . . . ,vk,M] is the solution vector at xk along the y direction, illustrated
in Fig. 1. To simplify the notation we introduce vw,e,s,n to define the boundary values at the west, east, south
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Fig. 1. Domain 2-D.
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and north boundaries (see Fig. 1). In order to distinguish whether a difference operator P is working in the x or
the y direction we will use the notations Px and Py. The following 2-D operators will frequently be used:
Dx ¼ ðD1 � IyÞ; Dy ¼ ðIx � D1Þ;
DðbÞ2x ¼ ðD

ðbÞ
2 � IyÞ; DðbÞ2y ¼ ðIx � DðbÞ2 Þ;

H x ¼ ðH � IyÞ; H y ¼ ðIx � HÞ;
ð8Þ
where D1, DðbÞ2 and H are the 1-D operators. Ix,y are the identity matrices of appropriate sizes in the x and y

direction, respectively. We also introduce the 2-D norm H � H xH y .

3. Analysis

We will introduce the main idea of this article with a 1-D model problem, before we go on with more inter-
esting 2-D equations.

3.1. Compatible SBP operators

Consider the heat equation ut = uxx. The energy method leads to
d

dt
kuk2 ¼ 2uuxj10 � 2kuxk2

: ð9Þ
By discretizing ut = uxx with a narrow-diagonal first-derivative SBP operator D1 twice, we obtain the semi-dis-
crete approximation vt ¼ H�1ð�DT

1 HD1 þ BD1Þv. The energy method leads to
d

dt
kvk2

H ¼ 2vNðD1vÞN � 2v0ðD1vÞ0 � 2ðD1vÞTHðD1vÞ: ð10Þ
Formula (10) exactly mimics (9), except for the highest frequency mode (see [15]). If we instead use the narrow-
diagonal second-derivative SBP operator D2, we obtain the semi-discrete approximation vt = H�1(�M + BS)v
of ut = uxx, leading to
d

dt
kvk2

H ¼ 2vNðSvÞN � 2v0ðSvÞ0 � 2vTMv: ð11Þ
Estimate (11) is a somewhat more vague approximation of (9), since the term �vTMv is only known to be non-
positive (see [13]). However, the advantage with narrow-diagonal second-derivative SBP operators is that they
damp the highest frequency mode. We would like to relate M to DT

1 HD1, to understand the nature of the
estimate (11). This is the key (as we will show later in this section) in order to derive stable narrow-stencil
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approximations of the compressible Navier–Stokes equations in 2-D and 3-D. The goal for the rest of this
section is to show that M ¼ DT

1 HD1 þ R, and prove that R is positive semi-definite.
The following definition is central in this paper:

Definition 3.1. Let D1 and D2 be pth-order accurate narrow-diagonal first- and second-derivative SBP
operators. If D2 ¼ H�1ð�DT

1 HD1 � RðpÞ þ BSÞ, and the remainder R(p) is positive semi-definite, D1 and D2 are
called compatible.

Lemma 3.2. For the Cauchy problem, the remainder R(p) (see Definition 3.1) up to eighth-order accuracy is posi-
tive semi-definite.

Proof. One can derive the following relations for the remainders R(p) (p = 2,4,6,8):
� Rð2Þ ¼ � h3

4
D4;

� Rð4Þ ¼ þ h5

18
D6 �

h7

144
D8;

� Rð6Þ ¼ � h7

80
D8 þ

h9

600
D10 �

h11

3600
D12;

� Rð8Þ ¼ þ h9

350
D10 �

h11

2520
D12 þ

h13

14700
D14 �

h15

78400
D16;

ð12Þ
where D2n = (D+D�)n is an approximation of d2n

dx2n. For example, (D+D�v)j = (vj+1 � 2vj + vj�1)/h2 is the sec-
ond-order accurate narrow second-derivative finite difference approximation. By using Fourier analysis, it
is easily shown (see, for example, [15]) that �R(p) constitutes only dissipative terms. h

Hence, we have shown that the wide-stencil plus a dissipative term is equal to the narrow-stencil for a Cau-
chy problem. This was expected since the narrow-stencil damps the highest frequency mode.

For initial-boundary value problems we need to close the schemes at the boundaries with one-sided stencils.
For the second-order accurate case (see Appendix C) we have
Rð2Þ ¼ 1

h

1
4
� 1

2
1
4

� 1
2

5
4
�1 1

4
1
4
�1 3

2
�1 1

4
1
4
�1 3

2
�1 1

4

. .
.

1
4
�1 3

2
�1 1

4
1
4
�1 5

4
� 1

2
1
4
� 1

2
1
4

26666666666666664

37777777777777775
: ð13Þ
The following Theorem can be proven (see Appendix A):

Theorem 3.3. Let A be an n · n penta-diagonal symmetric matrix. Assume
Pn

j¼1Aij ¼ 0 and Aii > 0, Ai,i+1 < 0,

Ai,i+2 > 0. If �A1,2 P 2A1,3, �An,n�1 P 2An,n�2 and �Ai,i+1 P 2Ai�1,i+1 + 2Ai,i+2, i = 2 . . . n � 2, then A is
positive semi-definite.

Corollary 3.4. The matrix, R(2), given by (13) is positive semi-definite.

Proof. The conditions in Theorem 3.3 can easily be verified. h

SBP operators often include free parameters that can be tuned. For the second- and fourth-order accurate
narrow-diagonal SBP operators, there are no free parameters. For the sixth- and eighth-order accurate nar-
row-diagonal SBP operators, the number of free parameters in D1 are one and three, respectively.
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The sixth-order accurate D1 operator (see Appendix C) has one free parameter x1. The original choice for
x1 (see [19]) was done to raise the truncation error to fourth-order at one boundary point (of totally 6). That
choice however does not lead to a positive definite R(6), which can be found by a numerical eigenvalue analysis.
There are other properties to consider (besides compatibility), such as spectral radius (see, for example, [21])
and accuracy. To find an good value for the free parameter x1 we perform a numerical search, ‘‘optimizing’’
(we do not claim that we have a global optimum) for accuracy, spectral radius and compatibility, leading to
x1 = .0.70127127127. (We identify that there is a strong correlation between accuracy, spectral radius and
compatibility, see Fig. 2.) A numerical study reveals that there is an interval
Fig. 2.
of D1
x1 2 ½0:6789094547 0:7254477238�; ð14Þ

where R(6) is positive semi-definite, see Fig. 2.

In the eighth-order accurate case, D1 has three free parameters (see Appendix C). The following values:
x1 ¼ 0:6978947368; x2 ¼ �0:1205263157; x3 ¼ 0:7586842105;
lead to R(8) P 0. An eigenvalue analysis is not a strict proof, since it does not necessarily hold for an arbitrary
number of grid points. However, in the fourth- and sixth-order cases it is possible pose a stronger statement.
(In the eighth-order case we have not been able to work out a stronger proof than the eigenvalue analysis.)

Proposition 3.5. R4 P 0 and, R6 P 0 with x1 = 0.70127127127 for any number of grid points.

Proof. See Appendix B. h

The first main result of this paper is stated in the following Theorem:

Theorem 3.6. With proper choices of the free parameters in D1, the second-, fourth- and sixth-order accurate

narrow-diagonal SBP operators are compatible.

Proof. See Corollary 3.5 and Proposition 3.4. h
3.2. Stability of a linearized Burgers’ equation in 2-D

The main focus in this paper is to show that compatibility is a necessary condition obtaining an energy esti-
mate (i.e., stability) for the compressible Navier–Stokes equations, which in 2-D can be written as
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A numerical study of varying x1. Solid line (log-scale) is the largest positive eigenvalue of �R; the dashed line is the spectral radius
and the dashed-dotted shows the error (in l2) of D1 applied to a test function.



2300 K. Mattsson et al. / Journal of Computational Physics 227 (2008) 2293–2316
~ut þ F x þ Gy ¼ ðeC11~ux þ eC12~uyÞx þ ðeC21~ux þ eC22~uyÞy ; ½x; y� 2 X; t P 0: ð15Þ
To introduce the basic ideas, we begin the analysis by considering the 2-D Burgers’ equation
ut þ
u2

2

� �
x

þ u2

2

� �
y

¼ ðc11ux þ c12uyÞx þ ðc21ux þ c22uyÞy ; ½x; y� 2 X; t P 0; ð16Þ
which is a model of (15). We expand the second-derivative terms to obtain
ut þ
u2

2

� �
x

þ u2

2

� �
y

¼ c11uxx þ ðc12uyÞx þ ðc21uxÞy þ c22uyy þ ðc11Þxux þ ðc22Þyuy ; ½x; y� 2 X; t

P 0: ð17Þ
We linearize around the exact solution �u by introducing u ¼ �uþ u0,
u0t þ �uu0x þ �uu0y ¼ c11ð�uÞu0xx þ ðc12ð�uÞu0yÞx þ ðc21ð�uÞu0xÞy þ c22ð�uÞu0yy þ ðc11ð�uÞÞxu0x þ ðc22ð�uÞÞyu0y : ð18Þ
By freezing the coefficients in (18), we obtain
u0t þ au0x þ bu0y ¼ c11u0xx þ c12u0yx þ c21u0xy þ c22u0yy ; ½x; y� 2 X; t P 0; ð19Þ
where a ¼ �u, b ¼ �u and cij are now frozen coefficients. Note that ðc11ð�uÞÞx ¼ ðc22ð�uÞÞy ¼ 0 since �u ¼ constant.
The linearization of the non-split form (16) and the expanded form (17) is naturally the same (when freezing
the coefficients). Well-posedness for both of those formulations follows if (19) is well-posed for all a, b in the
range of �u and similarly for the second-derivative terms. (For more information on this linearization proce-
dure see [9,5,1].)

Remark. We will prove that the perturbation u 0 stays bounded. By freezing the coefficients in (18) we have
discarded lower-order terms. Those lower order terms will contribute to a potential growth of the perturbation
u 0, but the additional growth of the lower order terms will always be bounded (see for example [17]).
Moreover, the growth due to the linearization for any problem with a small viscosity (cij � �u) will mainly
come from the convective terms with the strongest non-linearity. The convective terms are linearized in the
same way for both formulations.

Remark. For Burgers’ equation we could even have discarded the convective terms since well-posedness and
stability is purely governed by the dissipative terms. (This statement is obvious since there exist a Cole-Hopf
transformation for Burgers’ equation.) However, we linearize the convective and viscous terms separately. To
show the procedure in the hyperbolic–parabolic Navier–Stokes case it is necessary to keep the terms separated
in order not to change the number and type of boundary conditions.

To simplify notation we will only study the western boundary of the computational domain (see Fig. 1),
and we now replace u 0 by u. The other boundaries are treated similarly. (We point out that the problem with
proving stability for the narrow-stencil approximations are as much a Cauchy problem as it is an initial-
boundary value problem, due to the compatibility relation.) Consider the following boundary condition
auþ c11ux þ c12uy ¼ g: ð20Þ

To simplify the analysis we assume that the boundary data is homogeneous. (The analysis holds for inhomo-
geneous data, but introduces unnecessary notation.) We apply the energy method to (19), and with the use of
(20) we obtain
d

dt
kuk2 ¼ BT þ DI : ð21Þ
The contribution from the dissipative terms is given by
DI ¼ �
Z 1

0

Z 1

0

wTðC þ CTÞwdxdy; C ¼
c11 c12

c21 c22

� �
; w ¼

ux

uy

� �
: ð22Þ
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Parabolicity requires that
xTðC þ CTÞx P 0: ð23Þ

The boundary term is given by BT ¼

R 1

0
ðaþ 2aÞu2

w dy. An energy estimate is obtained (including only the wes-
tern boundary) if
aþ 2a 6 0: ð24Þ

A semi-discretization of (19) using narrow-diagonal SBP operators D1, D2 and the SAT method, can be

written as
vt þ aDxvþ bDxv ¼ c11D2xvþ c12DxDyvþ c21DyDxvþ c22D2yvþ SAT: ð25Þ

The discrete version of the boundary condition (20) is given by
LTv ¼ avw þ c11ðSxvÞw þ c12ðDyvÞw ¼ g: ð26Þ
The penalty term in (25) is given by SAT ¼ sH�1
x e0 � ðLTv� gÞ.

Lemma 3.7. The scheme (25) with homogeneous data is stable, if D1 and D2 are compatible, s = 1, and (23), (24)

hold.

Proof. Let g = 0. Multiplying (25) by vTH from the left and adding the transpose lead to
d

dt
kvk2

H ¼ �2c11vT
wHðSxvÞwð1� sÞ � 2c12vT

wHðDyvÞwð1� sÞ þ ðaþ 2saÞvT
wHvw þ DI � c11vTRxHyv

� c22vTH xRyv:
The discrete dissipation is given by
DI ¼ �
Dxv

Dyv

� �T

½H � ðC þ CTÞ�
Dxv

Dyv

� �
; ð27Þ
which exactly mimics the continuous dissipation (22), except for the highest frequency mode. (This is the dis-
sipation term we obtain employing a wide-stencil approximation of (16).) Here we have used the fact that D2

and D1 are compatible, (see Definition 3.1) i.e., that R � M � DT
1 HD1 is positive semi-definite. Hence, the two

terms �c11vTRxHyv � c22vTHxRyv introduce a small additional damping (that is not present using a wide-sten-
cil approximation). With s = 1 we obtain
d

dt
kvk2

H ¼ ðaþ 2aÞvT
wHvw þ DI � c11vTRxHyv� c22vTHxRyv:
This is completely analogous to (21). If (24) holds we obtain a non-growing energy. h

Remark. The semi-discrete approximation of the expanded form does not necessarily mimic the energy esti-
mate of the variable coefficients problem (18), i.e., the linearized problem without freezing the coefficients.
This is naturally obtained using a wide-stencil (using the first-derivative SBP operator twice) approximation
of the non-split form. Hence, the expanded form introduces lower order terms that can potentially contribute
to a non-physical time-growth of the numerical solution. (But the growth will always be bounded, i.e., the
approximation is stable.) However, we have strong indications that this is not the case (see (11) in Section 2).
3.3. Stability of the Navier–Stokes equations

We are now ready to tie everything together. The (wide-stencil) semi-discrete approximation of (15) using
first-derivative SBP operators D1 is given by
vt þ DxF þ DyG ¼ DxðeC11Dxvþ eC12DyvÞ þ DyðeC21Dxvþ eC22DyvÞ: ð28Þ
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A narrow-stencil approximation of (15) is given by
vt þ DxF þ DyG ¼ Dð
eC 11Þ

2x vþ Dx
eC12Dyvþ Dy

eC21Dxvþ Dð
eC 22Þ

2y v: ð29Þ
The linearized and frozen coefficient problem of (15) is given by
ut þ Aux þ Buy ¼ C11uxx þ C12uxy þ C21uxy þ C22uyy ; ½x; y� 2 X; t P 0; ð30Þ

where A, B, C11, C12, C21 and C22 are symmetric constant coefficient 4 · 4 matrices (see [1]). We assume that
(30) is subjected to the well-posed boundary conditions LTu = g (see for example [4]). We apply the energy
method to (30),
d

dt
kuk2 ¼ BT þ DI ; ð31Þ
where
DI ¼ �
Z 1

0

Z 1

0

wTðC þ CTÞwdxdy; C ¼
C11 C12

C21 C22

� �
; w ¼

ux

uy

� �
; ð32Þ
denotes the contribution from the dissipative terms. Parabolicity requires that (23) holds. BT are the bounded
boundary terms (see [4] for details).

The (wide-stencil) semi-discrete approximation of (30) is given by
vt þ ADxvþ BDyv ¼ ðC11DxDx þ C12DxDy þ C21DyDx þ C22DyDyÞvþ SAT: ð33Þ

The penalty (SAT) term imposes the well-posed boundary conditions LTu = g. Multiplying (33) by vTH � I4

from the left and adding the transpose lead to
d

dt
kvk2

H�I4
¼ BT þ DI : ð34Þ
The discrete dissipation is given by
DI ¼ �
Dx � I4v

Dy � I4v

� �T

½H � ðC þ CTÞ�
Dx � I4v

Dy � I4v

� �
; ð35Þ
which exactly mimics the physical dissipation (32). Proper tuning of the penalty parameters in SAT yield
boundary terms BT that exactly mimic the continuous boundary terms (see [4] for details).

A narrow-stencil approximation of (30) is given by
vt þ ADxvþ BDyv ¼ ðC11D2x þ C12DxDy þ C21DyDx þ C22D2yÞvþ SAT: ð36Þ

The second main result of this paper is stated in the following theorem:

Theorem 3.8. Eq. (36) is stable if D1 and D2 are compatible and if (33) is stable.

Proof. The difference between (33) and (36) is the approximation of the two second-derivative terms C11uxx

and C22uyy. The wide-stencil approximation of the second-derivative operator is given by
D1D1 ¼ H�1ð�DT

1 HD1 þ BD1Þ, and the narrow stencil operator is given by D2 = H�1(�M + BS). BD1 and
BS are equivalent and correspond to the boundary derivative operator that interact with the SAT term in
the energy estimate to produce boundary terms BT that exactly mimics the continuous boundary terms (as
an example of this interaction see Lemma 3.7). According to Definition 3.1, M ¼ DT

1 HD1 þ R, with R positive
semi-definite.

Multiplying (36) by vTH � I4 from the left and adding the transpose lead to
d

dt
kvk2

H�I4
¼ BT þ DI � vTðRþ RTÞv:
The above estimate is identical to (34) except for the additional term �vTðRþ RTÞv, where
R ¼ RxH y � C11 þ H xRy � C22:
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Since D1 and D2 are compatible R is positive semi-definite. Stability of (36) follows since (33) is stable (see
[4]). h

We have shown that the narrow-stencil approximation (36) of the linearized Navier–Stokes equations (30)
is stable if D1 and D2 are compatible. Strang [20] showed that if the solution of the non-linear differential equa-
tion is sufficiently smooth, convergence follows if the linearized approximation is stable, meaning that linear
stability is a necessary and sometimes sufficient condition for stability.

4. Computations

The accuracy and stability properties of the narrow- and the wide-stencil approximations are compared by
performing numerical simulations of 2-D Burgers’ equation and the compressible Navier–Stokes equations in
2-D and 3-D. The convergence rate is calculated as
q ¼ log10

kw� wðh1Þkh

kw� wðh2Þkh

� ��
log10

h1

h2

� �
; ð37Þ
where w is the analytic solution and wðh1Þ the corresponding numerical solution with grid size h1. kw� wðh1Þkh is
the discrete l2-error. The standard, explicit fourth-order Runge–Kutta method is used for time integration.

4.1. 2-D Burgers’ equation

The analytic solution to (17) with c11 = c12 = c21 = c22 = � is
u ¼ �a tanh
aðð1� aÞxþ ay � ctÞ

2�

� �
þ c; ð38Þ
which describes a 2-D viscous shock. The parameter a defines the propagation angle of the shock, and a, c can
be chosen arbitrarily. We solve the problems on a rectangular domain X, and choose � = 0.1 such that the
solution is well resolved on the grids considered.

A viscous shock solution that moves at a 76� angle across the grid (see Fig. 3) is computed with a = 1, c = 2
and a = 0.2 in (38). Convergence studies for the second-, fourth- and sixth-order accurate narrow- and wide-
stencil approximations are shown in Tables 1–3. We integrate to t = 0.3.
Fig. 3. Initial data for the viscous shock solution to Burgers’ equation at two different as.



Table 1
log(l2 � errors) and convergence rates for the second-order narrow- and wide-stencil approximations of Burgers’ equation

N, M log l2
(narrow) q(narrow) log l2

(wide) q(wide)

21 �2.17 �2.10
41 �2.81 2.13 �2.74 2.14
61 �3.17 2.08 �3.10 2.05
81 �3.43 2.05 �3.35 2.02

Unsteady solution.

Table 2
log(l2 � error) and convergence rates for the fourth-order narrow- and wide-stencil approximations of Burgers’ equation

N, M log l2
(narrow) q(narrow) log l2

(wide) q(wide)

21 �3.28 �2.85
41 �4.44 3.86 �3.72 2.89
61 �5.14 3.98 �4.23 2.93
81 �5.64 3.99 �4.60 2.96

Unsteady solution.

Table 3
log(l2 � errors) and convergence rates for the sixth-order narrow- and wide-stencil approximations of Burgers’ equation

N, M log l2
(narrow) q(narrow) log l2

(wide) q(wide)

21 �3.42 �2.99
41 �4.83 4.70 �4.17 3.94
61 �5.71 4.98 �4.90 4.10
81 �6.34 5.07 �5.42 4.18

Unsteady solution.
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There are two sources of numerical errors, dispersive errors from the discretization of the convective terms,
and dissipative errors from the discretization of the viscous terms. The major difference between the narrow-
and the wide-stencil approximations is the treatment of the non-mixed second-derivative terms. We should not
expect to see to much difference in accuracy for problems where the dispersive errors are equal or larger than
the dissipative errors. This is true for the second-order case (see Table 1), which has large dispersive errors (due
to the error constants of the first-derivative approximations). For higher-order approximations, with much
less dispersive errors (see [12]), the narrow-stencil approximations are more accurate than the corresponding
wide-stencil approximations, as seen in Tables 1–3. Also the gain in accuracy is higher for steady problems (see
Tables 4–6, when the dispersive errors are zero).

A comparison between the fourth-order accurate narrow- and wide-stencil discretizations with a = 0.2 (see
Fig. 3) where the viscous shock travels out through the north and east boundaries was done. The results are
shown in Figs. 4 and 5, indicating the problem for the wide-stencil approximations (without the addition of
artificial dissipation to damp the highest frequency mode).
Table 4
log(l2 � errors) and convergence rates for the second-order narrow- and wide-stencil approximations of Burgers’ equation

N log l2
(narrow) q(narrow) log l2

(wide) q(wide)

21 �2.94 �2.43
41 �3.54 2.01 �3.05 2.06
61 �3.90 2.04 �3.41 2.04
81 �4.16 2.03 �3.66 2.03

Steady solution.



Table 5
log(l2 � errors) and convergence rates for the fourth-order narrow- and wide-stencil approximations of Burgers’ equation

N log l2
(narrow) q(narrow) log l2

(wide) q(wide)

21 �3.58 �2.96
41 �4.72 3.80 �3.83 2.87
61 �5.44 4.11 �4.37 3.05
81 �5.96 4.10 �4.75 3.06

Steady solution.

Table 6
log(l2 � errors) and convergence rates for the sixth-order narrow- and wide-stencil approximations of Burgers’ equation

N log l2
(narrow) q(narrow) log l2

(wide) q(wide)

21 �3.58 �3.04
41 �4.97 4.62 �4.21 3.87
61 �5.94 5.54 �4.93 4.14
81 �6.68 5.87 �5.46 4.23

Steady solution.

Fig. 4. The shock solution for the fourth-order accurate narrow- and the wide-stencil approximations of Burgers’ equation at t = 1, after a
passage through the north and east boundaries.
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Many applications are time-independent (steady-state) problems. A stationary viscous shock is computed
with a = 1, c = 0 in (38). This means that there are no dispersive errors present in the computation, which
highlights the dissipative errors. Convergence studies for the second-, fourth- and sixth-order accurate narrow-
and wide-stencil discretizations are shown in Tables 4–6. For the second-order accurate case the benefit of
using a narrow formulation is now more evident (compare with Table 1).

A leading motive (see Section 1) using a narrow-stencil approximation is to have damping of the highest
frequency mode. The spurious oscillations are often triggered by unresolved features in the solution (like a
shock). We set � = 0.01 to test the stability and accuracy properties of a mildly under-resolved problem (strong
shocks require additional artificial dissipation, also for narrow-stencil approximations). The solutions using
the second-order accurate wide- and narrow-stencil approximations are compared. For N < 100, this is a
slightly under-resolved problem. To obtain a solution with an l2-error less than 0.01, the second-order
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narrow-stencil approximation requires 382 grid points, and the corresponding wide-stencil approximation
requires 942 grid points. The difference is due to the presence of the highest frequency mode. In Figs. 6 and
7, we show a comparison between the narrow- and the wide-stencil approximations on the mesh with 382 grid
points. Both solutions were run to t = 10. The highest frequency mode is clearly present in the wide-stencil
approximation.

4.2. The compressible Navier–Stokes equations

We begin by computing an analytic viscous shock solution (see [22]) in 2-D. The solution characteristics
resemble that of (38), and the computational domain is 0 6 x,y 6 3. In the first test, we consider a moving
viscous shock initiated 0.5 unit lengths away from the diagonal of the box. The shock is propagated with



Fig. 7. The second-order accurate narrow- and the wide-stencil solution for the stationary shock at t = 10, for Burgers’ equation.
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Fig. 8. Schematic of problem setup (a) and initial profile (b). 2-D compressible Navier–Stokes equations.

Table 7
log(l2 � error) and convergence rate, q, for the narrow- and wide-stencil approximations of the Navier–Stokes equations, and a moving
shock solution

N lðnarrowÞ
2 q(narrow) lðwideÞ

2 q(wide)

30 �1.61 �1.43
60 �2.28 2.22 �2.06 2.07

120 �2.89 2.14 �2.68 2.06
240 �3.50 2.10 �3.28 2.05
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an angle of 45�, 1 length units across the grid. The Reynolds number is 10, which results in a smooth profile on
this particular grid. The initial profile on the 120 · 120-grid is shown in Fig. 8. A convergence study is shown
in Table 7, where the errors are measured at time t = 1.
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The difference (in accuracy) between the second-order accurate narrow- and wide-stencil approximations
are small. This is consistent with the analysis done for Burgers’ equation, where it was shown that the disper-
sive errors dominates (the dissipative errors) for the second-order approximations. (We expect that the gain
would have been larger for higher-order approximations.)

In the second test the propagation velocity is set to zero, resulting in a stationary viscous shock solution, to
avoid the dispersive errors. A convergence study is shown in Table 8. Again (compare with the results for Bur-
gers’ equation, see Table 4) the gain of using the narrow-stencil approximation is more evident.

As a final test we consider the 3-D compressible Navier–Stokes equations. Homogeneous, decaying isotro-
pic turbulence is simulated in a box of length 2p. The initial energy spectrum is given by
Table
log(l2 �
shock

N

30
60

120
240

Homogeneous
nergy;
EðkÞ ¼ 16

3

ffiffiffi
2

p

r
M2

t0

k4

k5
0

e�2k2=k2
0 ; ð39Þ
where Mt0 is the initial turbulence Mach number and k0 is the most energetic scale. From (39), the eddy turn-
over time is found to be s ¼ 2

ffiffiffi
3
p

=ðk0Mt0Þ. The method of Blaisdell et.al. [2] has been used to generate the ini-
tial condition for the velocities. The initial density and temperatures are set to be uniform. The viscosity is

chosen to have a power-law dependency on temperature as l
lref
¼ ð T

T ref
Þn, where n = 0.76.

The simulation is computed using 643 grid-points, with Rek = 30 (Re number based on Taylor micro
scale), Mt0 = 0.3 and k0 = 4. The challenge in this computation is to predict the correct energy decay rate.
The results are verified with the one of Honein and Moin [6], as shown in Fig. 9. In [6], a sixth-order com-
pact finite difference scheme is used. The numerical results shows that the wide-stencil solution becomes
unstable after a small time, while the narrow-stencil solution is stable for a very long time. The simulation
using the wide-stencil approximation can be stabilized by adding artificial dissipation. However, artificial
dissipation needs to be tuned, in order not to destroy the correct energy decay rate. In contrast, the nar-
row-stencil approximation has small extra dissipation built in and is more accurate. Hence, the second-order
accurate narrow-stencil solution is more robust and accurate for simulations where the flow is on the verge
of being resolved.
8
error) of density and convergence rate, q, for the narrow- and wide-stencil approximations of Navier–Stokes equations, for steady

lðnarrowÞ
2 q(narrow) lðwideÞ

2 q(wide)

�2.76 �2.45
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Remark. Both the narrow- and the wide-stencil approximations need artificial dissipation for certain
applications to stabilize the solution. This is due to the non-linear terms that may amplify high frequency
modes. Since the narrow-stencil approximation has more artificial viscosity built in, it is likely that it will need
less extra artificial dissipation than the wide-stencil approximation.
5. Conclusions

We have proven that narrow-stencil approximations of the compressible Navier–Stokes equations are
stable, if the first- and second-derivative finite difference operators are compatible. Our approach have
been to use SBP operators and the SAT technique to enforce the boundary conditions. It is proven in
a number of cases that compatibility can be achieved by proper tuning of the free parameters in the
SBP operators.

Numerical computations for both Burgers’ equation, and the compressible Navier–Stokes equations in 2-D
and 3-D corroborate the stability proofs, and show that a stable narrow-stencil approximation is more accu-
rate and robust than the corresponding wide-stencil approximation.
Appendix A. Proof of Theorem 3.3

Proof. Consider
vTAv ¼
Xn

i¼1

Xn

j¼1

viAijvj ¼
Xn

i¼1

vi Aiivi þ
X
j 6¼i

Aijvj

 !
¼
Xn

i¼1

vi �
X
j 6¼i

Aij

 !
vi þ

X
j 6¼i

Aijvj

 !

¼
Xn

i¼1

vi

X
j 6¼i

Aijðvj � viÞ
 !

:

Since A = AT we have
Xn

i¼1

vi

X
j 6¼i

Aijðvj � viÞ
 !

¼
Xn

i¼1

X
j>i

ðvi � vjÞ2ð�AijÞ:
Denote the ith row sum by Si. Then consider
S1 ¼ �
X
j>2

A1jðv2 � vjÞ2 ¼ ð�A12Þðv1 � v2Þ2 þ ð�A13Þðv1 � v3Þ2

¼ ð�A13Þðv1 � v2Þ2 þ ð�A13Þððv1 � v2Þ2 þ ðv2 � v3Þ2 þ 2ðv1 � v2Þðv2 � v3ÞÞ:
Introduce, wi = vi � vi+1 such that
S1 ¼ ðw1;w2Þ
�A12 � A13 �A13

�A13 �A13

� �
w1

w2

� �
: ð40Þ
The structure for all interior row sums follows from (40) and we write
Si ¼ ðwi;wiþ1Þ
�Ai;iþ1 � Ai;iþ2 �Ai;iþ2

�Ai;iþ2 �Ai;iþ2

� �
wi

wiþ1

� �
: ð41Þ
For i = n � 1 we have
ðwn�1;wnÞ
�An�1;n 0

0 0

� �
wn�1

wn

� �
: ð42Þ
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(For i = n there is no contribution.) Compute
Xn

i¼1

Si ¼ vTAv ¼ wTBw; ð43Þ
where
wT ¼ ðw1;w2; . . . ;wnÞ ð44Þ
and
B ¼

�A12 � A13 �A13 0 . . .

�A13 �A13 � A23 � A24 �A24 0

0 �A24 �A24 . . .

. .
.

0

. . .� An;n�1 � An;n�2 0

0 0

0BBBBBBBBB@

1CCCCCCCCCA
:

Note that �A12 is positive by assumption. If �A12 P 2A13, the first row is diagonally dominant. The second
row is diagonally dominant if �A23 P 2A13 + 2A24. The same structure carries through the entire matrix
yielding the general condition �Ai;iþ1 P 2Ai�1;iþ1 þ 2Ai;iþ2 for diagonal dominance. Hence, the eigenvalues
of B are all positive or 0 and it follows that A is positive semi-definite. h
Appendix B. Proof of Proposition 3.5

Proof. We begin by stating that for all grid sizes we have numerically tested that the R matrices for the
fourth-, sixth- and eighth-order schemes are positive semi-definite. Although a strong indication, we cannot
formally guarantee by a mere numerical study that this is the case as h! 0. We will give a stronger argument
that this is the case using an observation from the second-order proof.

In the second-order case we proved that a matrix A was positive semi-definite via the identity
vTAv ¼ ðDvÞTBðDvÞ; ð45Þ
where D is the non-square matrix
D ¼

�1 1 0 . . .

0 �1 1 0 . . .

. .
.

�1 1

0BBBB@
1CCCCA: ð46Þ
Semi-definiteness of A then follows from diagonal dominance of B. The action of this operation is that it re-
moves the 0 eigenvalue of A and compresses the penta-diagonal matrix A to a tri-diagonal matrix B. For high-
order schemes one could repeat this procedure and compress the matrix further until achieving a diagonally
dominant matrix.

Let R denote the remainder matrix R � M � DT
1 HD1. Let D be defined as above and D�1 its non-square

pseudo-inverse. Multiplication from left and right by a symmetric positive matrix does not change definiteness
of R. In this case D�1D is a symmetric positive semi-definite matrix. It has 1 eigenvalue equal to 0. The
following algorithm is used to ensure positive semi-definiteness of R.

1. For R being an n · n-matrix, compute the eigenvalues. If k of them is 0 and all the other are positive, con-
tinue to (2). (If not the proof fails.)
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2. Compute the (n � 1) · (n � 1)-matrix R1 = (D�1)TRD�1. R1 has one sub- and super diagonal less than
R. Compute the eigenvalues of R1. They should all be positive except k � 1 which are 0. (If not the
proof fails.) If R1 is diagonally dominant with the non-negative entries on the diagonal, go to (4), else
go to (3).

3. If k � 1 > 0 repeat 2) with R = R1 and a reduced size D, else the proof fails.
4. By construction, the rows in the interior of R1 repeats themselves. Letting h! 0 is equivalent to adding

more (identical) rows in the interior of R. Since all rows that are added are diagonally dominant we do
not change the definiteness of R1. Transforming back to R leads to a positive semi-definite R.

Without showing all the details, we conclude that we have tested the above algorithm for the fourth- and
sixth-order schemes and reduced the R matrix to a diagonally dominant matrix. For the eighth-order scheme
the above algorithm does not lead to a proof since the reduced matrix never becomes diagonally dominant.
However, even in the eighth-order case, we stress that R as well as all reduced size R1s all are positive semi-
definite. h
Appendix C. SBP operators

The first-derivative operator is given by D1 = H�1Q and the second derivative operator
D2 = H�1(�M + BS). Using the first-derivative SBP operator twice, we obtain the following second-derivative
SBP operator, ðD1Þ2 ¼ ð�DT

1 HD1 þ BD1Þ. D2 and (D1)2 have different dissipative terms. The remainder is given
by R ¼ M � DT

1 HD1. The operators for the second-, fourth-, sixth- and eighth-order case are given below. For
the second-order case we also include the variable diffusion SBP operator.

C.1. Second-order interior and first-order boundary accuracy for D1 and D2

The first-derivative operator is defined by
H ¼ h

1
2

1

. .
.

1 0

1
2

2666666664

3777777775
; Q ¼

� 1
2

1
2

� 1
2

0 1
2

. .
.

� 1
2

0 1
2

� 1
2

1
2

26666666664

37777777775
:

The narrow second-derivative SBP operator for variable coefficients are given by
D2 ¼ H�1ð�DTeBDþ BSÞ;
where
D ¼ 1

h

�1 1

�1 1

. .
.

�1 1

�1 1

2666666664

3777777775
; eB ¼ h

2

b0 þ b1

b1 þ b2

. .
.

bN�1 þ bN

0

2666666664

3777777775
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and
B ¼

�b0

0

. .
.

0

bN

26666664

37777775; S ¼ 1

h

3
2
�2 1

2

1

. .
.

1
1
2
�2 3

2

266666664

377777775
:

For the special case of constant b we obtain
DTeBD ¼ M ¼ 1

h

1 �1

�1 2 �1

. .
.

�1 2 �1

�1 1

26666664

37777775

and the matrix R is given by (13).

C.2. Fourth-order interior and second-order boundary accuracy for D1 and D2

The discrete norm is given by H ¼ hdiagð17
48
; 59

48
; 43

48
; 49

48
; 1; . . .Þ. The Q, M and S operators (using 9 points) are

given by
Q ¼

� 1
2

59
96

� 1
12
� 1

32

� 59
96

0 59
96

1
12

� 59
96

0 59
96

� 1
12

1
32

0 � 59
96

0 2
3
� 1

12
1

12
� 2

3
0 2

3
� 1

12

. .
.

1
12

� 2
3

0 2
3
� 1

12
1

12
� 2

3
0 59

96
0 � 1

32
1

12
� 59

96
0 59

96
� 1

12

� 59
96

0 59
96

1
32

1
12

� 59
96

1
2

266666666666666666664

377777777777777777775

;

M ¼ 1

h

9
8
� 59

48
1
12

1
48

� 59
48

59
24

� 59
48

1
12

� 59
48

55
24

� 59
48

1
12

1
48

0 � 59
48

59
24

� 4
3

1
12

1
12

� 4
3

5
2
� 4

3
1

12

. .
.

1
12

� 4
3

5
2
� 4

3
1

12
1

12
� 4

3
59
24

� 59
48

0 1
48

1
12
� 59

48
55
24

� 59
48

1
12

� 59
48

59
24

� 59
48

1
48

1
12

� 59
48

9
8

266666666666666666666664

377777777777777777777775

;
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S ¼ 1

h

11
6
�3 3

2
� 1

3

1

. .
.

1

� 1
3

3
2
�3 11

6

266666664

377777775
:

The left boundary closure for the dissipative term ðM � DT
1 HD1Þ=h is given by
59097
573104

� 10679
35088

3889
13328

� 941
11696

� 80
6321

1
392

0 0 0 0 0

� 10679
35088

34043
35088

� 295
272

16697
35088

� 59
1032

0 0 0 0 0 0
3889

13328
� 295

272
95231
59976

� 2891
2448

95
196

� 373
3528

1
144

0 0 0 0

� 941
11696

16697
35088

� 2891
2448

83293
52632

� 3779
3096

19
36

� 1
9

1
144

0 0 0

� 80
6321

� 59
1032

95
196

� 3779
3096

487117
303408

� 1079
882

19
36

� 1
9

1
144

0 0
1

392
0 � 373

3528
19
36

� 1079
882

3757
2352

� 11
9

19
36

� 1
9

1
144

0

0 0 1
144

� 1
9

19
36

� 11
9

115
72

� 11
9

19
36
�1=9 1

144

. .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.

26666666666666664

37777777777777775
:

C.3. Sixth-order interior and third-order boundary accuracy for D1 and D2

The discrete norm is given by H ¼ hdiag 13649
43200

; 12013
8640

; 2711
4320

; 5359
4320

; 7877
8640

; 43801
43200

; 1; . . .
� 	

. The left boundary closure of
Q is given by
q1;1 ¼ � 1
2

q1;6 ¼ x1 � 89387
129600

q3;5 ¼ �20x1 þ 242111
17280

q5;7 ¼ � 3
20

q1;2 ¼ x1 � 953
16200

q2;3 ¼ 10x1 � 57139
8640

q3;6 ¼ 6x1 � 182261
43200

q5;8 ¼ 1
60

q1;3 ¼ �4x1 þ 715489
259200

q2;4 ¼ �20x1 þ 745733
51840

q4;5 ¼ 10x1 � 165041
25920

q6;7 ¼ 3
4

q1;4 ¼ 6x1 � 62639
14400

q2;5 ¼ 15x1 � 18343
1728

q4;6 ¼ �4x1 þ 710473
259200

q6;8 ¼ � 3
20

q1;5 ¼ �4x1 þ 147127
51840

q2;6 ¼ �4x1 þ 240569
86400

q4;7 ¼ 1
60

q6;9 ¼ 1
60

q3;4 ¼ 20x1 � 176839
12960

q5;6 ¼ x1
In the interior we have the skew-symmetric stencil ðQvÞj ¼ � 1
60

vj�3 þ 3
20

vj�2 � 3
4
vj�1 þ 3

4
vjþ1 � 3

20
vjþ2 þ 1

60
vjþ3.

The optimal values of the free parameter is given by
x1 ¼
342523

518400
The 5th-order accurate boundary derivative operator is given by
S ¼ 1

h

25
12
�4 3 � 4

3
1
4

1

. .
.

1
1
4
� 4

3
3 �4 25

12

266666664

377777775
:
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The left boundary closure of h M is given by
m1;1 ¼ 15583
12960

m2;3 ¼ � 134603
51840

m3;6 ¼ � 30409
86400

m5;7 ¼ 3
20

m1;2 ¼ � 253093
172800

m2;4 ¼ 4141
2880

m4;4 ¼ 37967
6480

m5;8 ¼ � 1
90

m1;3 ¼ 52391
129600

m2;5 ¼ � 86551
103680

m4;5 ¼ � 53369
17280

m6;6 ¼ 49
18

m1;4 ¼ � 68603
259200

m2;6 ¼ 24641
129600

m4;6 ¼ 54899
129600

m6;7 ¼ � 3
2

m1;5 ¼ 2351
14400

m3;3 ¼ 10991
2160

m4;7 ¼ � 1
90

m6;8 ¼ 3
20

m1;6 ¼ � 4207
103680

m3;4 ¼ � 22583
5184

m5;5 ¼ 2747
810

m6;9 ¼ � 1
90

m2;2 ¼ 42353
12960

m3;5 ¼ 46969
25920

m5;6 ¼ � 820271
518400
In the interior we have the symmetric scheme: �hðMvÞj ¼ 1
90

vj�3 � 3
20

vj�2 þ 3
2
vj�1 � 49

18
vj þ 3

2
vjþ1�

3
20

vjþ2 þ 1
90

vjþ3.

C.4. Eighth-order interior and fourth-order boundary accuracy for D1 and D2

The discrete norm H is defined as
H 1;1 ¼ 1498139
5080320

H 3;3 ¼ 20761
80640

H 5;5 ¼ 299527
725760

H 7;7 ¼ 670091
725760

H 2;2 ¼ 1107307
725760

H 4;4 ¼ 1304999
725760

H 6;6 ¼ 103097
80640

H 8;8 ¼ 5127739
5080320
The left boundary closure of Q is given by
q1;1 ¼ � 1
2

q4;5 ¼ � 47206049
322560

þ 175x3 þ 50x1 þ 175x2

q1;2 ¼ � 15849163
2257920

þ 10x3 þ x1 þ 5x2 q4;6 ¼ 7628371
483840

� 40x1 � 105x2

q1;3 ¼ 235236677
6773760

� 45x3 � 5x1 � 24x2 q4;7 ¼ 79048289
1088640

� 105x3 þ 10x1

q1;4 ¼ � 3577778591
60963840

þ 75x3 þ 10x1 þ 45x2 q4;8 ¼ � 19764155
677376

þ 40x3 þ 10x2

q1;5 ¼ 67906303
1693440

� 50x3 � 10x1 � 40x2 q5;6 ¼ � 165527
27648

þ 15x1 þ 35x2

q1;6 ¼ � 305821
193536

þ 5x1 þ 15x2 q5;7 ¼ � 4472029
193536

þ 35x3 � 5x1

q1;7 ¼ � 13322233
1244160

þ 15x3 � x1 q5;8 ¼ 657798011
60963840

� 15x3 � 5x2

q1;8 ¼ 24839327
6773760

� 5x3 � x2 q5;9 ¼ � 1
280

q2;3 ¼ � 47167457
483840

þ 126x3 þ 15x1 þ 70x2 q6;7 ¼ x1

q2;4 ¼ 53224573
241920

� 280x3 � 40x1 � 175x2 q6;8 ¼ x2

q2;5 ¼ � 211102099
1244160

þ 210x3 þ 45x1 þ 175x2 q6;9 ¼ 4
105

q2;6 ¼ 3884117
483840

� 24x1 � 70x2 q6;10 ¼ � 1
280

q2;7 ¼ 1202315
24192

� 70x3 þ 5x1 q7;8 ¼ x3

q2;8 ¼ � 536324953
30481920

þ 24x3 þ 5x2 q7;9 ¼ � 1
5

q3;4 ¼ � 120219461
483840

þ 315x3 þ 50x1 þ 210x2 q7;10 ¼ 4
105

q3;5 ¼ 249289259
967680

� 315x3 � 75x1 � 280x2 q7;11 ¼ � 1
280

q3;6 ¼ � 290167
17920

þ 45x1 þ 126x2 q8;9 ¼ 4
5

q3;7 ¼ � 1191611
13440

þ 126x3 � 10x1 q8;10 ¼ � 1
5

q3;8 ¼ 7439833
225792

� 45x3 � 10x2 q8;11 ¼ 4
105

q8;12 ¼ � 1
280
In the interior we have the skew-symmetric stencil ðQvÞj ¼ 1
280

vj�4 � 4
105

vj�3 þ 1
5
vj�2 � 4

5
vj�1 þ 4

5
vjþ1�

1
5
vjþ2 þ 4

105
vjþ3 � 1

280
vjþ4. The optimal values of the free parameters are given by
x1 ¼
663

950
x2 ¼

17218045066

142857142469
x3 ¼

2883

3800
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The fifth-order accurate boundary derivative operator is given by
S ¼ 1

h

4723
2100

� 839
175

157
35

� 278
105

103
140

1
175

� 6
175

1

. .
.

1

� 6
175

1
175

103
140

� 278
105

157
35

� 839
175

4723
2100

266666664

377777775
:

The left boundary closure of h M is given by
m3;3 ¼ 230744527
1462987008

m1;1 ¼ 784878351911
658344153600

m3;4 ¼ � 423587231
2438311680

m6;6 ¼ 278531401019
73149350400

m1;2 ¼ 166903006097
128011363200

m3;5 ¼ 43205598281
87779220480

m6;7 ¼ � 36895065001
18287337600

m1;3 ¼ � 1567796819
40963636224

m3;6 ¼ � 2438189281
3657467520

m6;8 ¼ 137529995233
614454543360

m1;4 ¼ 11872280191
57605113440

m3;7 ¼ 5124426509
14629870080

m6;9 ¼ � 8
315

m1;5 ¼ � 181883477
6400568160

m3;8 ¼ � 2099380193
30722727168

m6;10 ¼ 1
560

m1;6 ¼ � 5440752167
128011363200

m4;4 ¼ 4782560143
1880983296

m7;7 ¼ 118811863211
41146509600

m1;7 ¼ 135555328849
9216818150400

m4;5 ¼ � 24121280107
10972402560

m7;8 ¼ � 239073018673
153613635840

m2;2 ¼ 51548757343
24383116800

m4;6 ¼ 10557998671
9753246720

m7;9 ¼ 1
5

m2;3 ¼ � 29208451
548620128

m4;7 ¼ � 43556319241
65834415360

m7;10 ¼ � 8
315

m2;4 ¼ � 82699112501
87779220480

m4;8 ¼ 8886055027
61445454336

m7;11 ¼ 1
560

m2;5 ¼ 85781419
3657467520

m5;5 ¼ 10455211129
2925974016

m8;8 ¼ 256250
90711

m2;6 ¼ 14122349173
54862012800

m5;6 ¼ � 28760793619
10972402560

m8;9 ¼ � 8
5

m2;7 ¼ � 744007661
6857751600

m5;7 ¼ 80321706377
87779220480

m8;10 ¼ 1
5

m2;8 ¼ 173210981
13654545408

m5;8 ¼ � 4039043579
25602272640

m8;11 ¼ � 8
315

m5;9 ¼ 1
560

m8;12 ¼ 1
560
In the interior we have the symmetric scheme: �hðMvÞj ¼ � 1
560

vj�4 þ 8
315

vj�3 � 1
5
vj�2 þ 8

5
vj�1 � 205

72
vjþ

8
5
vjþ1 � 1

5
vjþ2 þ 8

315
vjþ3 � 1

560
vjþ4.
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